

Aspergillus spp infection in immunocompromised and non-neutropenic patients in Infection Intensive Care: a retrospective observational study

D. Rubino¹, C. Fontana², S. Leone³, G. V. Stazi¹, A. Capone⁵, C. Pinnetti⁴, V. Sabatini¹, A. Vulcano², B. Bartolini², S. Carrara², S. Cicalini⁵, A. Antinori⁴ and M. G. Bocci¹

¹Intensive Care Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. ²Microbiology and BioBank Unit, National Institute for Infectious Diseases Lazzaro Spallanzani , Rome, Italy. ³Clinical Epidemiologic Unit, National Institute for Infectious Diseases Lazzaro Spallanzani , Rome, Italy. ³Clinical Epidemiologic Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy. ⁴Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy. ⁴Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy. ⁴Clinical Infection Unit, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy. ⁴Clinical and Research Infectious Diseases, National Institute for Infectious Diseases, National Institute for Infectious Diseases, Pazzaro Spallanzani IRCCS, Rome, Italy. ⁴Clinical and Research Infectious Diseases, National Institute for Infectious Diseases, National Infectious, National Infectious,

Introduction

Results

- Although Aspergillus spp infection (AI) is more prevalent in immunocompromised patients (IP), it is becoming more frequent in patients admitted to Intensive Care Unit (ICU) and not part of the traditional risk groups. (1,2,3)
- The diagnostic criteria that define AI, are still controversial.
- This study aims to investigate the demographic, clinical, microbiological features and outcome associated with a diagnosis of IA in IP compared to nonneutropenic patients (N-NP) admitted to a single-center ICU over a 3-year period.

Study Design

¹ We conducted a retrospective observational study of patients with a microbiological diagnosis of IA admitted to ICU of National Institute for Infectious Diseases Lazzaro Spallanzani (INMI) from January 2021 to December 2023.

Methods

- All consecutive adult (>18 years) ICU patients with a positive Real Time Polymerase Chain Reaction (PCR) assay result for Aspergillus spp were eligible for inclusion.
- Data were collected from electronic medical records and included demographics (sex, age), the immunocompromising condition, the clinical characteristic (comorbidities, SARS-CoV-2 co-infection, tracheostomy, year of diagnosis of IA) and outcome (length of stay and mortality within 28 days) and other microbiology results (Galactomannan [GALAG], 1-3 Beta-D-glucan [BDGLU] and culture).
- Continuous variables were expressed as median and interquartile range (IQR). Categorical variables were reported as numbers (percentages).
- To explore any statistically significant differences between the group of patients with (IP) and without underlying immunocompromising conditions (N-NP) across the available characteristics, Chisquared or Fisher's Exact test for categorical variables and Wilcoxon rank sum test for continuous variables were performed.

- A total of 82 patients with AI were identified during the study period according to the results of the PCR assay.
- Of these, 30 (36.6%) patients were immunocompromised patients and 52 (63.4%) non-neutropenic patients.
- Immunocompromised patients included 7 people living with HIV, 15 haematological/oncology patients and 8 transplant patients.
- Overall, males accounted for 68.3% of individuals. The median age was 66 years and the most frequent comorbidity was cardiovascular (34.1%). SARS-CoV-2 and tracheostomy occurred in 20.7% and 52.4%, of subjects, respectively. Mortality within 28 days occurred in 45.1% of patients.

Characteristics	Overall N = 82 ¹	IP ¹	N-NP ¹	p-value ²
		N = 30 (36.6%) ¹	N = 52 (63.4%) ¹	
Sex				0.027
Female	26 (31.7%)	14 (46.7%)	12 (23.1%)	
Male	56 (68.3%)	16 (53.3%)	40 (76.9%)	
Age	66 (57.3, 75.0)	60.5 (51.5, 72.0)	71.0 (62.0, 77.0)	0.02

¹ n (%); Median (IQR) ² Pearson's Chi-squared test; Wilcoxon rank sum test

Compared with N-NP, IP with AI were more likely to be females (46.7% vs 23.1%, p=0.027), with lower age (60.5 vs 71 years, p=0.02) and with no SARS-CoV-2 concomitant infection (40% vs 9.6 %,p=0.001)

Characteristc	Overall, N = 82 ¹	IP ¹	N-NP ¹	p-value ²
		N = 30 (36.6%) ¹	N = 52 (63.4%) ¹	
Comorbidities				0.1
Respiratory	10 (12.2%)	4 (13.3%)	6 (11.5%)	
Cardiovascular	28 (34.1%)	6 (20.0%)	22 (42.3%)	
Neurological	1 (1.2%)	0 (0.0%)	1 (1.9%)	
Other	13 (15.9%)	4 (13.3%)	9 (17.3%)	
No	30 (36.6%)	16 (53.3%)	14 (26.9%)	
SARS-CoV-2				0.001
Yes	17 (20.7%)	18 (60.0%)	47 (90.4%)	
No	65 (79.3%)	12 (40%)	5 (9.6%)	
Tracheostomy				0.6
Yes	43 (52.4%)	17 (56.7%)	26 (50.0%)	
No	39 (47.6%)	13 (43.3%)	26 (50%)	
Year of Al				0.032
2021	16 (19.5%)	2 (6.7%)	14 (26.9%)	
2022	41 (50.0%)	20 (66.7%)	21 (40.4%)	
2023	25 (30.5%)	8 (26.7%)	17 (32.7%)	

² Pearson's Chi-squared test;Fisher's exact test

No statistically significant difference in length of stay and mortality within 28 days was observed between the group of patients with and without underlying immunocompromising conditions (Table 1-3). Overall, simultaneous evidence of AI was detected in 31 (37.8%), 13 (15.9%) and 14 (17.1%) patients for GALAG, BDGLU and culture, respectively.

Characteristics	Overall, N = 82 ¹	IP ¹	N-NP ¹	p-value ²
		N = 30 (36.6%) ¹	N = 52 (63.4%) ¹	
Lenght of stay (days)	20 (10, 38)	21 (9.8, 38.8)	18 (10.5, 32.5)	0.4
Mortality within 28 days	37 (45.1%)	13 (43.3%)	24 (46.2%)	0.8

 The concordance results between PCR, Galactomannan and 1-3 Beta-D-glucan are described in Table 4.

Table 4 Microbiology of patients with AI, overall and by immunocompromise status				
Microbiology	Overall N = 82 ¹	IP ¹	N-NP ¹	p-value [:]
		N = 30 (36.6%) ¹	N = 52 (63.4%) ¹	
Positivity to PCR and Galactomannan	31 (37.8%)	9 (30%)	22 (42.3%)	0.3
Positivity to PCR and 1-3 Beta-D- Glucan	13 (15.9%)	7 (23.3%)	6 (11.5%)	0.2
Positivity to PCR and Culture	14 (17.1%)	4 (13.3%)	10 (19.2%)	0.2
Positivity to PCR, Galactomannan and 1-3 Beta-D-Glucan	7 (8.5%)	4 (13.3%)	3 (5.8%)	0.3
Positivity to PCR, Galactomannan, 1-3 Beta-D-Glucan and Culture	3 (3.7%)	1 (3.3%)	2 (3.8%)	>0.9
PCR samples				
BAL (Broncho-Alveolar Lavage)	63 (76.8%)	24 (80.0%)	39 (75.0%)	0.3
BAS (Cronchoaspirate)	16 (19.5%)	4 (13.3%)	12 (23.1%)	
Other	3 (3.7%)	2 (6.7%)	1 (1.9%)	
Galactomannan samples				0.032
BAL (Broncho-Alveolar Lavage)	21 (25.6%)	6 (20%)	15 (28.8%)	
BAS (Cronchoaspirate)	5 (6.1%)	0 (0.0%)	5 (9.6%)	
Serum	3 (3.7%)	3 (10%)	0 (0.0%)	
Not available	53 (64.6%)	21 (70%)	32 (61.5%)	
¹ n (%): Median (IQR)				

² Pearson's Chi-squared test;Fisher's exact test

Conclusion

- The study suggests that IP, particularly those who are female, younger in age, and uninfected with SARS-CoV-2, are more likely to develop AI, compared to N-NP.
- There wasn't a significant difference in outcomes and mortality rates between IP and N-NP.
- Notably, the study reports a higher incidence of GALAG positivity in the BAL of N-NP compared to IP. These observations highlight the importance of reevaluating the utility of the GALAG test in diagnosing AI in IP in the future.

References

2.

Kanaujia, R., Singh, S. & Rudramurthy, S. M. Aspergillosis: an Update on Clinical Spectrum, Diagnostic Schemes, and Management. Current Fungal Infection Reports vol. 17 Preprint at https://doi.org/10.1007/s12281-023-00461-5 (2023). Cadena, J., Thompson, G. R. & Patterson, T. F. Aspergillosis: Epidemiology, Diagnosis, and Treatment. Infectious Disease Clinics of North America vol. 35 Preprint at https://doi.org/10.1016/j.idc.2021.03.008 (2021). Bukkems, L. M. P., van Dommelen, L., Regis, M., van den Heuvel, E. & Nieuwenhuizen, L. The Use of Galactomannan Antigen Assays for the Diagnosis of Invasive Pulmonary Aspergillosis in the Hematological Patient: A Systematic Review and Meta-Analysis. Journal of Fungi vol. 9 Preprint at https://doi.org/10.3390/jof9060674 (2023).