

Comparison of Sanger sequencing and amplicon-based NGS approaches for the detection of HIV-1 drug resistance mutations

L. Fiaschi, C. Biba, I. Varasi, N. Bartolini, C. Paletti, I. Vicenti, F. Saladini, M. Zazzi Department of Medical Biotechnologies, University of Siena

Introduction

Study Design

Huge progresses have been made in the field of antiretroviral therapies for HIV-1, but the development of drug resistance continue to be a major problem for a subset of infected individuals.

The standard method to test HIV-1 drug resistance is Sanger sequencing, but the availability of commercial next-generation sequencing (NGS) kits will probably lead to its replacement to test HIV-1 drug resistance.

- We compared the ability of detecting drug resistance mutations among three different sequencing methods on a panel of 28 clinical isolates.
- The 28 plasma samples had at least one resistance mutation on PCR amplicons including PR, RT (aminoacids 1-400) and IN coding regions.

We performed Sanger sequencing and two different PCR ampliconbased NGS approaches: one using home-made amplicons and one based on the commercial CE IVD "HIV-1 solution v2" kit by Arrow Diagnostics.

Methods

In the homemade NGS approach, the amplicons used for Sanger sequencing were also used for tagmentation, indexing and library preparation (Illumina) DNA Prep kit). To perform NGS according to the "HIV-1 solution v2" kit, viral RNA of each sample was amplified based on the manufacturer's instructions. Both NGS libraries were loaded on Nano 2x250 bp v2 flowcells and run on a MiSeq platform by Illumina.

FASTA files from Sanger sequencing were analyzed through the HIVdb Program v9.6 (HIVdb Stanford), while FASTQ files from NGS were analyzed through the HIVdb-NGS (beta) program (HIVdb Stanford) using ≥100 as minimum read depth and 5% as mutation detection threshold. Viral subtype on consensus sequences for each sample was determined through the COMET HIV-1 tool.

Table 1. Comparison of additional mutations identified among the three sequencing methods with their relative frequency

Sample	Sanger	NGS: homemade NGS	NGS: HIV-1 solution v2	
155826		PR: I50IV (29%) NRTI: V75VI (6.5%)	PR: I50IV (24%)	
155974		NRTI: K219KQ (7.1%) NNRTI: V106VI (10%)	-	
155979	NRTI: M41L	PR: I54IT (10%) NRTI: M41L IN: A128AT (6.2%)	-	
156436		NNRTI: K238KT (7.8%) - N348NI (6.8%)	-	
156471	NRTI: D67N, K219KE		NRTI: E44EA (15%) - D67DN (19%)	
156493		NNRTI: V179VID (I 85%, D 7%) - Y181YC (34%)	NNRTI: Y181YC (25%)	
156570		PR: K20KT (14%)	PR: K20KT (9.7%)	
156592		NNRTI: K101KE (40%)	NNRTI: K101KE (14%)	
156669		IN: E157EQ (7.1%)	NNRTI: Y181YC (5,8%) IN: E157EQ (11%)	
156813		PR: G73GS (7.3%)	NNRTI: K103KN (7%)	
156817		NNRTI: V106VI (5.4%)	-	
156835		NRTI: M41ML (30%)	PR: M46MI (5.2%) NRTI: M41ML (19%)	
156880			NNRTI: V179VIT (I: 12%; T: 5.6%)	
157347		NNRTI: V106VI (16%) IN: T97TA (6.2%)	NNRTI: V106VI (15%)	
157312		NRTI: S68SG (52%) - T69Δ NNRTI: Y181YC (55%)	NRTI: S68SG (7.8%) NNRTI: Y181YC (68%)	

PI: Protease Inhibitors; NRTI: Nucleosidic Reverse Transcriptase Inhibitors; NNRTI: Non Nucleosidic Reverse Transcriptase Inhibitors; INRTI: Non Nucleosidic Reverse

Sample	Antiretroviral	Sanger	NGS: homemade NGS	NGS: HIV-1 solution v2
155974	DOR - RPV - ETR	S	PLLR	S
155974	ABC - TAF	l I	l I	LLR
155974	DOR	LLR	LLR	PLLR
156471	TAF	R	l I	R
456400	DOR	PLLR	l I	- I
156493	RPV - ETR	S	l I	1
	DOR	S	LLR	l I
156592	RPV	l I	R	R
	ETR - EFV	PLLR	LLR	1
	NVP	PLLR	l I	1
156669	RPV - ETR	S	S	l I
156813	ATV	S	PLLR	S
156817	DOR - RPV - ETR	S	PLLR	S
156835	ATV - LPV	S	S	PLLR
4530.43	DOR	LLR	l I	l I
157347	ETR	l I	l I	R
	3TC/FTC	LLR	l I	LLR
	DOR	LLR	1	1
157312	RPV	LLR	R	R
	ETR - EFV	LLR	1	1
	NVP	1	R	R

DOR: doravirine; RPV: rilpivirine; ETR: etravirine; EFV: efavirenz; NVP nevirapine; 3TC/FTC: lamuvidine/emitricitabine S: susceptible; PLLR: "potential low-level resistance; LLR: "Low-level resistance; I: intermediate resistance; R: resistance

Results

The 28 plasma samples had a median viral load of 4.8 [IQR 4.4-5.3] log₁₀ HIV-1 RNA copies/mL. Subtype B was identified in 17 (61%) cases, CRF02_AG in 4 (14%) and F1 in 3 (11%).

Comparable median read depth was obtained through the homemade NGS and the "HIV-1 Solution v2" kit (2189 [IQR 1842-7809] reads vs. 4634 [3056-6472] reads, p=0.143).

Regions with coverage depth <100 reads were detected in 2/28 and 17/28 cases with</p> homemade NGS and the HIV-1 Solution v2 kit, respectively. This occurred in 9 B and 8 non-B subtypes, mainly affecting codons 14-49 and 260-319 of RT, codons 1-75 and 201-288 of IN.

NGS based methods globally identified additional mutations with respect to Sanger in 15/28 (54%) cases, with agreement between methods in 7 cases (Table 1). Resistance mutations identified only by NGS had a frequency <20% in all but 7 cases for the homemade NGS and in all but 3 cases for the "HIV-1 solution v2" kit (Table 1).

NGS also showed a different prediction of drug susceptibility in 11/28 (39%) with respect to Sanger. This prediction was in agreement among the two NGS methods in 18/28 (64%) samples (Table 2).

Conclusion

NGS systems showed fair agreement to detect additional resistance mutations that were not identified through Sanger sequencing. However, the sensitivity of detection of minority mutations may be affected by low coverage issues that are frequently observed with the "HIV-1 Solution v2" kit.